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Abstract. Multivariate Public Key Cryptography (MPKC) is one of
the main candidates for secure communication in a post-quantum era.
Recently, Yasuda and Sakurai proposed in [7] a new multivariate encryp-
tion scheme called SRP, which combines the Square encryption scheme
with the Rainbow signature scheme and the Plus modifier.
In this paper we propose a practical key recovery attack against the SRP
scheme, which is based on the min-Q-rank property of the system. Our
attack is very efficient and allows us to break the parameter sets recom-
mended in [7] within minutes. Our attack shows that combining a weak
scheme with a secure one does not automatically increase the security of
the weak scheme.
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1 Introduction

Multivariate cryptography is one of the main candidates to guarantee the se-
curity of communication in the post-quantum era [1]. Multivariate schemes are
in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices such as RFIDs or smart
cards [2, 3]. While there exist many practical multivariate signature schemes such
as UOV [4], Rainbow [5] and Gui [6], the number of secure and efficient multi-
variate public key encryption schemes is quite limited.

At ICISC 2015, Yasuda and Sakurai proposed in [7] a new multivariate en-
cryption scheme called SRP, which combines the Square encryption scheme [8],
the Rainbow signature scheme [5] and the Plus method [9]; hence the name SRP.
The scheme is very efficient and has a comparably small blow up factor between
plain and ciphertext size. In [7] it is claimed that, by the combination of Square
and Rainbow into one scheme, several attacks against the single schemes are no
longer applicable.
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In this paper we present a new practical key recovery attack against the SRP en-
cryption scheme, which uses the min-Q-rank property of the system to separate
the Square from the Rainbow and Plus polynomials. By doing so, we can easily
find (parts of) the linear transformations T and U used to hide the structure
of the central map F in the public key. The attack is completed by using the
known structure of the Rainbow part of the central map.

Our attack is very efficient and allows us (even with our limited resources) to
break the SRP instances proposed in [7] for 80 and 112 bit security in 8 minutes
and less than three hours respectively. Our attack therefore shows that this at-
tempt to combine several multivariate schemes into one brings no extra security
into the system.

Our paper is organized as follows. In Section 2, we give an overview of the
basic concepts of multivariate public key cryptography and introduce the SRP
encryption scheme of [7]. In Section 3 we recall the concept of the Q-Rank of
a quadratic map, while Section 4 describes the main ideas and results of the
Kipnis-Shamir attack on HFE needed for the description of our attack. Section
5 describes our key recovery attack against the SRP scheme in detail, whereas
Section 6 deals with the complexity of our attack. In Section 7 we present the
results of our computer experiments, and Section 8 concludes the paper.

2 The SRP Encryption Scheme

In this section, we recall the SRP scheme of [7]. Before we come to the description
of the scheme itself, we start with a short overview of the basic concepts of
multivariate cryptography.

2.1 Multivariate cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials over a finite field F. The security of multivariate schemes is based
on the MQ Problem of solving such a system. The MQ Problem is proven to be
NP-Hard even for quadratic polynomials over the field GF(2) [10] and believed
to be hard on average (both for classical and quantum computers).

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible quadratic map F : Fn → Fm (central map). To hide the struc-
ture of F in the public key, we compose it with two invertible affine (or linear)
maps T : Fm → Fm and U : Fn → Fn. The public key of the scheme is given
by P = T ◦ F ◦ U : Fn → Fm. The relation between the easily invertible central
map F and the public key P is referred to as a morphism of polynomials.

Definition 1 Two systems of multivariate polynomials F and G are said to be
related by a morphism iff there exist two affine maps T ,U such that G = T ◦F◦U .
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The private key consists of the three maps T ,F and U and therefore allows to
invert the public key.

To encrypt a message M ∈ Fn, one simply computes C = P(M) ∈ Fm.
To decrypt a ciphertext C ∈ Fm, one computes recursively x = T −1(C) ∈ Fm,
y = F−1(x) ∈ Fn and M = U−1(y). M ∈ Fn is the plaintext corresponding to
the ciphertext C. This process is illustrated in Figure 1.

Decryption

Encryption

C ∈ Fm - x ∈ Fm - y ∈ Fn - M ∈ Fn

6

P

T −1 F−1 U−1

Fig. 1. Encryption and decryption process for multivariate public key encryption
schemes

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of
the vector x under the central map F and therefore the decrypted plaintext will
(with overwhelming probability) be unique.

2.2 SRP

The SRP encryption scheme was recently proposed by Yasuda and Sakurai
in [7] by combining the Square encryption scheme [8], the Rainbow signature
scheme [5] and the Plus method [9]. Since both Square and Rainbow are very
efficient, the same holds for the SRP scheme. Furthermore, the combination with
Rainbow provides an efficient way to distinguish between correct and false so-
lutions of Square. In [7] it is claimed that, by the combination of Square and
Rainbow into one scheme, several attacks against the single schemes are no longer
applicable.

In this paper, we restrict to variants of SRP in which the Rainbow part is
replaced by UOV [4]. Note that the parameter sets proposed in [7] are of this
type. However we note that our attack can easily be generalized to variants of
SRP which use a Rainbow (and not UOV) map FR and that these modifications
have no significant effect on the running time of the attack.
We choose a finite field F = Fq of odd characteristic with q ≡ 3 mod 4 and,
for an odd integer d, a degree d extension field E = Fqd . Let φ : Fd → E be an
isomorphism between the vector space Fd and the field E. Moreover, let o, r, s
and l be non-negative integers.
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Key Generation Let n = d + o − l, n′ = d + o and m = d + o + r + s. The
central map F : Fn′ → Fm of the scheme is the concatenation of three maps FS ,
FR, and FP . These maps are defined as follows.

(i) The Square part FS : Fn′ → Fd is the composition of the maps

Fn
′ πd−→ Fd φ−→ E X 7→X2

−→ E φ−1

−→ Fd.

Here πd : Fd+o → Fd is the projection to the first d coordinates.
(ii) The UOV (Rainbow) part FR = (f (1), . . . , f (o+r)) : Fn′ → Fo+r is con-

structed as the usual UOV signature scheme: let V = {1, . . . , d} and O =
{d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the quadratic polynomial
f (k) is of the form

f (k)(x1, . . . , xn′) =
∑

i∈O,j∈V
α
(k)
i,j xixj+

∑
i,j∈V,i≤j

β
(k)
i,j xixj+

∑
i∈V ∪O

γ
(k)
i xi+η

(k),

with α
(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) randomly chosen in F. 1

(iii) The Plus part FP = (g(1), . . . , g(s)) : Fn′ → Fs consists of s randomly chosen
quadratic polynomials g(1), . . . , g(s).

We additionally choose an affine embedding U : Fn ↪→ Fn′ of full rank and an
affine isomorphism T : Fm → Fm. The public key is given by P = T ◦ F ◦ U :
Fn → Fm and the private key consists of T ,F and U .

Fd

""
Fn

P

>>
U // Fn+l

FS

;;

FP ##

FR // Fo+r // Fm T // Fm

Fs

<<

Encryption: Given a message M ∈ Fn, the ciphertext C is computed as C =
P(M) ∈ Fm.

Decryption: Given a ciphertext C = (c1, . . . , cm) ∈ Fm, the decryption is ex-
ecuted as follows.

(1) Compute x = (x1, . . . , xm) = T −1(C).
(2) Compute X = φ(x1, . . . , xd) ∈ E.

1 Note that, while, in the standard UOV signature scheme, we only have o polynomials,
the map FR consists of o + r polynomials of the Oil and Vinegar type. This fact is
needed to reduce the probability of decryption failures (see footnote 3).
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(3) Compute R1,2 = ±X(qd+1)/4 ∈ E and set

y(i) = (y
(i)
1 , . . . , y

(i)
d ) = φ−1(Ri) ∈ Fd (i = 1, 2). 2

(4) Given the vinegar values y
(i)
1 , . . . , y

(i)
d (i = 1, 2), solve the two systems of

o+ r linear equations in the n′ − d = o variables ud+1, . . . , un′ given by

f (k)(y
(i)
1 , . . . , y

(i)
d , ud+1, . . . , un′) = xd+k (i = 1, 2)

for k = 1, . . . , o+ r. The solution is denoted by (yd+1, . . . , yn′).
3

(5) Compute the plaintext M ∈ Fn by finding the pre-image of (y1, . . . , yn′)
under the affine embedding U .

3 Q-Rank

A critical quantity tied to the security of multivariate BigField schemes is the
Q-rank (or more correctly, the min-Q-rank) of the public key.

Definition 2 Let E be a degree n extension field of Fq. The Q-rank of a quadratic
map f(x) on Fnq is the rank of the quadratic form φ◦f ◦φ−1 in E[X0, . . . , Xn−1]

via the identification Xi = φ(x)q
i

.

Quadratic form equivalence corresponds to matrix congruence, and thus the
definition of the rank of a quadratic form is typically given as the minimum
number of variables required to express an equivalent quadratic form. Since con-
gruent matrices have the same rank, this quantity is equal to the rank of the
matrix representation of this quadratic form, even in characteristic 2, in which
the quadratics x2q

i

are additive, but not linear for q > 2.

Q-rank is invariant under one-sided isomorphisms f 7→ f ◦U , but is not invariant
under isomorphisms of polynomials in general. The quantity that is often meant
by the term Q-rank, but more properly called min-Q-rank, is the minimum Q-
rank among all nonzero linear images of f . This min-Q-rank is invariant under
isomorphisms of polynomials and is the quantity relevant for cryptanalysis.

In particular, min-Q-rank can be defined in circumstances for which Q-rank
may make little sense. Specifically, consider the case in which there are more
equations than variables, or the case in which we consider an extension field of
smaller degree than the number of variables. We may then define min-Q-rank in
the following manner.

2 The fact of q ≡ 3 mod 4 and d odd allows us to compute the square roots of X by
this simple operation. Therefore, the decryption process of both Square and SRP is
very efficient.

3 In [7, Proposition 1] it was shown that the probability of both (y
(1)
1 , . . . , y

(1)
d ) and

(y
(2)
1 , . . . , y

(2)
d ) leading to a solution of the linear system is about 1/q−r−1. Therefore,

with overwhelming probability, one of the two possible solutions is eliminated during
this step.
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Definition 3 Let E be a degree d < n extension field of Fq. The min-Q-rank of
a quadratic map f : Fnq → Fmq over E is

min-Q-rank(f) = min
L1

max
L2

{Q-rank (L1 ◦ f ◦ L2)},

where L1 : Fdq → Fmq and L2 : Fnq → Fdq are nonzero linear transformations.
As above, “Q-rank” computes the rank of its input as a quadratic form over
E[X0, . . . , Xd−1] via the identification Xi = φ(x)q

i

.

4 The KS Attack and Minors Modeling

The property of low min-Q-rank is a weakness of many BigField schemes and
has been exploited in many attacks, see [11–15]. While the attack in [12] ex-
ploits the low min-Q-rank property to speed up a direct algebraic attack, the
other cryptanalyses use the Kipnis-Shamir (KS) attack of [11] with either the
original KS modeling or with the minors modeling approach pioneered in [13].

The KS-attack recovers a related private key for a low min-Q-rank system with
codomain isomorphic to a degree n extension field E by exploiting the fact that
a quadratic form embedded in the homogeneous quadratic component of the
private key is of low rank, say r. Using polynomial interpolation, the public key
can be expressed as a collection of quadratic polynomials G over E, and it is
known that there is a linear map N such that N ◦G has rank r as a quadratic
form over E; thus, there exists a rank r matrix that is an E-linear combination of
the Frobenius powers of G. This turns the task of recovering the transformation
N into solving a MinRank problem over E.

Definition 4 (MinRank Problem(n,r,k)): Given k n× n matrices

M1, . . . ,Mk ∈ Mn×n(E), find an E-linear combination M =
∑k
i=1 αi ·Mi sat-

isfying
Rank(M) ≤ r.

The key recovery attack of [13] revises the KS approach by modeling the low
min-Q-rank property differently. The authors show that an E-linear combination
of the public polynomials has low rank as a quadratic form over E. Setting the
unknown coefficients in E of each of the public polynomials as variables, the
polynomials representing (r + 1)× (r + 1) minors of such a linear combination,
which must be zero due to the rank property, reside in Fq[t0,0, . . . , t0,m−1]. Thus
a Gröbner basis needs to be computed over Fq and the variety computed over
E. This technique is called minors modeling and dramatically improves the effi-
ciency of the KS-attack. The complexity of the KS-attack with minors modeling
is asymptotically O(n(dlogq(D)e+1)ω), where 2 < ω ≤ 3 is the linear algebra con-
stant.

One should note that the situation is more complicated when multiple variable
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types are utilized in a scheme. In the case that there are more variables than the
degree of E over Fq, the dimensions of the matrices do not match the degree of
the extension. Still, if there is a central map with low min-Q-rank with a small
subspace of the plaintext space as its domain, as it is the case of SRP, it may
remain possible to recover a low rank map. Specifically, using fewer variables
does not increase the rank of a quadratic form.

5 Key Recovery for SRP

In this section we explain our key recovery attack on SRP in detail. For the
purpose of simplicity of exposition, we restrict to the homogeneous quadratic
case. The method extends to the general case trivially.

We note that a public key of SRP is isomorphic to an analogous scheme without
the embedding as long as πd◦U is full rank, which occurs with high probability. In
this case, let π′d : Fnq → Fdq be the projection onto the first d coordinates and find

a projection ρ : Fn+lq → Fnq such that U ′ = ρ◦U has full rank and π′d◦U ′ = πd◦U .
Let F∗ : E→ E represent the squaring map so that FS = φ−1 ◦F∗ ◦φ◦πd. Then
given the central maps F ′R = FR ◦ U ◦ U ′−1 and F ′P = FP ◦ U ◦ U ′−1, which are
of Rainbow shape and of random shape respectively, one easily checks that

T ◦

F∗ ◦ πdFR
FP

 ◦ U = T ◦

F∗ ◦ π′dF ′R
F ′P

 ◦ U ′.
It therefore suffices to consider the scheme with l = 0; however, for specificity,
we analyze the embedding explicitly in the following discussion.

The attack is broken down into two main steps. The first is finding a related
Square component private key. Then we discuss how to systematically solve for
the Rainbow and Plus polynomials to complete key recovery.

5.1 The min-Q-Rank of SRP

While it is true that the min-Q-rank of the public key of an instance of SRP over
a degree n extension is expected to be high, the public key retains the property
that there exists a linear combination of the public forms which is of low Q-rank
over the degree d extension used by the Square component. We verify this claim.

Let α be a primitive element of the degree d extension E of Fq. Fix a vector

space isomorphism φ : Fdq → E defined by φ(x) =
∑d−1
i=0 xiα

i. Furthermore, fix a

one dimensional representation Φ : E→ A defined by a
Φ7−→ (a, aq, . . . , aq

d−1

).

Define Md : Fdq → A by Md = Φ ◦ φ. We can explicitly represent this map
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with the matrix

Md =


1 1 · · · 1

α αq · · · αq
d−1

α2 α2q · · · α2qd−1

...
...

. . .
...

αd−1 α(d−1)q · · · α(d−1)qd−1

 ∈Md×d(E),

acting via right multiplication (so that we may use algebraists’ left-to-right com-
position). Thus we can pass between the two interesting representations of ele-

ments in E of the form (x0, . . . , xd−1) ∈ Fdq and (X,Xq, . . . , Xqd−1

) ∈ A simply

by right multiplication by Md or M−1
d .

The above map Md provides another way of expressing an SRP public key. Note
first that any homogeneous Fq-quadratic map from E to E induces a quadratic
form on A that can be represented as a d × d matrix with coefficients in E.
Since the maps FR and FP can be written as vectors of quadratic forms over
Fq[x1, . . . , xn] in matrix form, the entire public key can be expressed as a matrix
equation.

To achieve this matrix representation of the public key, we need some additional
notation. We blockwise define

M̃d =

[
Md 0
0 Io+r+s

]
∈Mm×m(E)

and

M̂d =

[
Md

0o×d

]
∈Mn′×d(E).

Note that M̃d = Φ ⊕ ido+r+s and M̂d = Φ ◦ πd. Furthermore, let F∗i be the
matrix representation of the quadratic form over A corresponding to the map
x 7→ x2q

i

.

Let (FS,0, . . . ,FS,d−1,FR,0, . . . ,FR,o+r−1,FP,0, . . . ,FP,s−1) denote them-dimensional
vector of (d+ o)× (d+ o) symmetric matrices associated to the private key. The
function corresponding to the application of each coordinate of a vector of such
quadratic forms followed by the application of a linear map represented by a
matrix will be denoted by the right product of the vector by the matrix. Next,
note that

(FS,0,FS,1, . . . ,FS,d−1)Md = (M̂dF
∗0M̂>

d , M̂dF
∗1M̂>

d , . . . , M̂dF
∗d−1M̂>

d ),

which yields

(xFS,0x
>,xFS,1x

>, . . . , xFS,d−1x
>)Md

= (xM̂dF
∗0M̂>

d x
>, xM̂dF

∗1M̂>
d x
>, . . . , xM̂dF

∗d−1M̂>
d x
>),
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as functions of x. Then we obtain the equation

(FS,0, . . . ,FS,d−1,FR,0, . . . ,FP,m−1)M̃d

= (M̂dF
∗0M̂>

d , . . . , M̂dF
∗d−1M̂>

d ,FR,0, . . . ,FP,s−1).
(1)

Next, consider the relation between the public key and the central maps of the
private key.

(P0, . . . ,Pm−1)T−1 = (UFS,0U
>, . . . ,UFP,s−1U

>).

By Equation (1), we have

(P0, . . . ,Pm−1)T−1M̃d

= (UM̂dF
∗0M̂>

d U>, . . . ,UM̂dF
∗d−1M̂>

d U>,UFR,0U
>, . . . ,UFP,s−1U

>).

Let T̂ = T−1M̃d = [ti,j ] ∈ Mm×m(E) and let W = UM̂d. Then we have
that

m−1∑
i=0

ti,0Pi = WF∗0W>. (2)

Since the rank of F∗i is one for all i, the rank of this E-linear combination
of the public matrices is bounded by one. Indeed, if the rank were zero, then
W = 0, and the scheme reduces to a weak version of Rainbow+ whose kernel is
the vinegar subspace. In particular, for all practical parameters one sets d > l,
implying d + o − l > o, which verifies that W 6= 0 (due to the fact that U is
required to be full rank). Thus we obtain the following:

Theorem 1 The min-Q-rank of the public key P of SRP(q, d, o, r, s, l) is, with
high probability, given by:

min-Q-rank(P ) =

{
0 if d ≤ l and UM̂d = 0,

1 otherwise.

Proof. If UM̂d = 0, then the span of P is of dimension at most m − d, and
thus the min-Q-rank of P is zero. Otherwise, with high probability, the public
polynomials are linearly independent. In this case, for any choice of L1, there
exists an L2 such that the Q-rank of the composition L1 ◦ P ◦ L2 is positive.

Consider, in particular, L1 to be the Fq-linear transformation defined by the
matrix consisting of the first d columns of T−1. Let L2 : Fdq → Fnq be linear of
full rank. Then

φ ◦ L1 ◦ P ◦ L2 ◦ φ−1 = F∗ ◦ φ ◦ πd ◦ U ◦ L2 ◦ φ−1.

Let L2 be the d×n matrix representation of L2. Then the matrix representation
of the above quantity is

M−1
d L2UM̂dF

∗0M̂>
d U>L>2 M>

d .
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Since F∗0 is of rank one and the image of M̂d is A, the product is of rank one

exactly when L2UM̂d is nonzero, otherwise, the rank of the above matrix is zero.

Since L2 is chosen to maximize rank, the Q-rank is zero exactly when UM̂d is
zero, which necessitates that d ≤ l.

One may note here that the matrix T̂ unmixes the Square equations from the
Rainbow and Plus polynomials. It further mixes the Rainbow and Plus polyno-
mials, but this is no issue since this phase of the attack is aimed at ultimately
recovering a representation of F∗.

5.2 Recovering the Output Transformation with MinRank

As demonstrated in the previous subsection, the recovery of T̂ begins by solving
a MinRank instance over E. This phenomenon is well studied and has been the
basis of previous cryptanalyses, see [13–15]. We may use the minors modeling
approach to take advantage of the fact that we can compute the Gröbner basis
over the small field, Fq.

Due to the extremely low min-Q-rank of the system, the system of minors is
homogeneous quadratic. The ideal generated by these minors is one dimensional,
so we may set a single variable to a fixed value, say 1. We then recover a sys-
tem of many quadratic equations in m − 1 variables. This system is massively
overdefined, so a solution can be recovered via linearization.

To accomplish this, we have to compute only as many minors as there are mono-
mials in m−1 variables of total degree ≤ 2. There are exactly

(
m+1
2

)
monomials

in m − 1 variables of degree less than or equal to two, so we randomly select(
m+1
2

)
minors and arrange their coefficients in a

(
m+1
2

)
×
(
m+1
2

)
matrix. As we

will show in Section 6, we expect such a matrix to have full rank with high prob-
ability, roughly q−1

q for large n and m. We may then linearly solve, recovering

the first column of T̂.

Once the first column of T̂ is recovered, the first d columns can be generated by
the relation

ti,j = tqi,j−1 for j = 1, . . . , d− 1.

We will return to the issue of computing the remaining columns of T̂ and sepa-
rating the Rainbow and Plus polynomials in Subsection 5.5.

5.3 Recovering the Input Transformation

Once the first column of the transformation T̂ = [ti,j ] is discovered, we have
access to the rank one matrix

m−1∑
i=0

ti,0Pi.

This matrix encodes the representation of the squaring map.
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Theorem 2 Given the first column of T̂, the recovery of W requires the solution
of a linear system of d+ o− l − 1independent equations in d+ o− l variables.

Proof. First, note that W = [wi,j ] is of the form wi,j = wq
k

i,j−k for all i ∈
{0, 1, . . . , d+ o− l} and for all 0 ≤ j, k < d. Thus, it suffices to solve for the first
column of W. Let K be the left kernel of the low rank matrix

m−1∑
i=0

ti,0Pi.

Let K be the matrix whose rows form a basis of K. By Equation (2), we know
that

0d+o−l−1×d+o−l = KWF∗0W>,

and since W is of full rank, it must be the case that

KWF∗0 = 0d+o−l−1×d.

Thus KW = ker(F∗0). In a proper basis the representation of F∗0 contains a
single nonzero entry in the first row and first column. Thus, the relation that
KW = ker(F∗0) is equivalent to the condition that the first column of W is
in the right kernel of K. Since this right kernel is one dimensional, this process
recovers all equivalent matrices W.

Recall that we have the relation

W = UM̂d = U

[
Md

0o×d

]
.

Then multiplying on the right by M−1
d yields

WM−1
d = U

[
Md

0o×d

]
M−1

d = U

[
Id

0o×d

]
. (3)

Thus, we obtain the first d columns of U. We may extend this matrix in any
manner to obtain a full rank n×(d+o) matrix. With high probability, a random
concatenation of o columns produces a full rank matrix U. For the sake of
recovering FS , we insist that the first n columns of U form an invertible matrix.

5.4 Recovering the Square Map

We now assume that we have recovered the first column, [ti,0], of T̂ and that we

have recovered U. Let Û represent the matrix consisting of the first d + o − l
columns of U. By construction, Û is invertible. We set U =

[
Û Û′

]
.

We can now explicitly compute

m−1∑
i=0

ti,0Pi = WF∗0W>.
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Note that

W = UM̂d =
[
Û Û′

] [Md

0o×d

]
= Û

[
Md

0(o−l)×d

]
.

Thus we have

m−1∑
i=0

ti,0Pi = Û

[
Md

0(o−l)×d

]
F∗0

[
M>

d 0d×(o−l)
]
Û>.

Therefore, we may compute

[
Md

0(o−l)×d

]
F∗0

[
M>

d 0d×(o−l)
]

= Û−1

(
m−1∑
i=0

ti,0Pi

)
Û−>, (4)

Now, by taking the top left d× d submatrix, we recover MdF
∗0M>

d . Finally, by
multiplying on the left by M−1

d and on the right by M−>
d , we recover F∗0.

5.5 Unmixing the Rainbow and Plus Polynomials

Having identified the vinegar subspace of linear forms on the input variables, we
can identify the Rainbow polynomials as those linear combinations of the public
polynomials which become linear when their inputs are restricted to the kernel
of those linear forms. In other words, we can find the Rainbow polynomials by
linearly solving for ti such that:

[
0(o−l)×dIo−l

]
Û−1

(
m−1∑
i=0

tiPi

)
Û−>

[
0d×(o−l)

Io−l

]
= 0. (5)

A basis ti,j of the solution space of this equation forms the columns d+1 through
d+o+r of T−1. We can place any selection of column vectors in the last s columns
of T−1 making it full rank, since no party is concerned with the values of the
plus polynomials.

Having recovered the complete transformation T−1, we can compute the Rain-
bow and Plus part of the central map by

(Fs,0, . . . ,FS,d−1,FR,0, . . . ,FR,o+r−1,FP,0, . . . ,FP,s−1)

= (Û−1P0Û
−>, . . . , Û−1PmÛ−>)T−1. (6)

Algorithm 1 shows the process of our attack in algorithmic form. In the appendix
of this paper, we illustrate our attack using a toy example.
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Algorithm 1 Our Key Recovery Attack on SRP

Input: SRP parameters (o, d, r, s, l), SRP public key P : Fn′ → Fm

Output: equivalent private key (T , (FS ,FR,FP ),U)
1: Solve a MinRank problem on the m public polynomials with target rank 1. Denote

the solution by v ∈ Em.

2: Define the elements of the m× d matrix T̂′ by t̂ij
′

= vq
j−1

i (j = 1, . . . , d).
3: Compute the first d columns of the matrix T−1 by T′

−1
= T̂ ·M−1

d .
4: Let K be the (n− 1)×n matrix representing the left kernel of the low rank matrix∑m−1

i=0 ti,0Pi and choose an element w ∈ Fn of its right kernel.

5: Define the elements of the n× d matrix W by wij = wqj−1

i (j = 1, . . . , d)
6: Recover the first d columns of the matrix U by equation (3).

7: Extend U to an invertible n× n matrix Û and Û to a full rank n× (d+ o) matrix
U.

8: Recover the map FS by equation (4).
9: Compute the columns d + 1, . . . , d + o + r of the matrix T−1 by solving the linear

system of equation (5). Append randomly columns to get an invertible m × m
matrix T−1.

10: Recover the matrices representing the Rainbow and plus polynomials by equation
(6).

6 Complexity of Attack

To estimate the complexity of our attack, we compute the Hilbert series of the
ideal generated by the 2× 2 minors of

m−1∑
i=0

ti,0Pi.

We can then recover the degree of regularity dreg explicitly.

Theorem 3 Let E[T ] = E[t0,0, . . . , tm−1,0]. Let I be the ideal generated by the
system of minors arising from the minors modeling variant of the KS-attack on
SRP(q, d, o, r, s, l) with d > l, n = d + o − l and m = d + o + r + s. Then the
Hilbert series of I (that is, the Hilbert Series of E[T ]/I) is

Hilbertseries(t) = 1 +mt.

Consequently the degree of regularity of the minors system is dreg = 2.

Proof. Consider the ideal I generated by the 2× 2 minors over E[T ]. There are(
n
2

)2
/2 distinct 2× 2 minors in an n× n symmetric matrix; however, each such

minor of the above matrix is a homogeneous quadratic polynomial in m vari-
ables. Thus the dimension of the span of the 2×2 minors is

(
m
2

)
+m =

(
m+1
2

)
. As

a consequence,
(
m+1
2

)
randomly chosen minors should be linearly independent

with probability approximately 1− 1
q .

Since I contains all linear combinations of the minors, I contains all quadratic
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monomials in E[T ]. Thus E[T ]/I contains representatives of exactly all equiv-
alence classes of degree less than two. Therefore, the Hilbert Series of E[T ]/I
is

HS(t) = 1 +mt.

Technically, the ideal I in Theorem 3 is not what we use in the attack. We use
I ′ = 〈I, t0,0 − 1〉, for example. However, adding polynomials to I cannot increase
the degree of regularity; thus, the degree of regularity in the actual attack is still
two.

This fact proves that we actually require no Gröbner basis algorithm for the
attack. Simple linearization and Gaussian elimination are effective in breaking
all parameters.

Specifically, recalling that with one variable fixed we have only m− 1 variables,
we may use the above calculation to estimate the complexity of recovering the
first column of T̂ using the minors modeling variant of the KS-attack.

Unmixing the Rainbow and plus polynomials only requires 2m matrix multi-
plications of dimension n matrices and solving a linear system in m variables.
The complexity of these operations is on the order of mω+1, and is therefore
dominated by the minors modeling step. Thus we obtain the following

Theorem 4 The complexity of our key recovery attack on SRP(q, d, o, r, s, l)
with d > l, n = d+o− l and m = d+o+r+s using the minors modeling variant
of the KS-attack is

O
((

m+ 1

2

)ω)
,

where 2 < ω ≤ 3 is the linear algebra constant.

7 Experimental Results

In order to estimate the complexity of our attack in practice, we created a
straightforward implementation of the key generation process of SRP and our
attack in MAGMA Code. The experiments run on a server with 16 AMD Opteron
processors(2.4 GHz) and 128 GB of RAM. However, for our experiments, we used
only a single core.

Table 1 shows, for different parameter sets, the results of our experiments.
The numbers in rows 3 and 10 show the time needed to solve the MinRank
problem and to recover the maps FS and U as well as the first d columns
of the matrix T−1. The numbers in row 4 and 11 show the time needed to
recover the remaining columns of T−1 and the maps FR and FP . The num-
bers in the fifth and twelfth row show the overall running time of our attack.
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parameters (q,d,o,r,s,l) (31,16,16,8,3,8) (31,24,24,12,4,12) (31,35,35,15,5,15)

(m,n) (43,24) (64,36) (90,55)

time for recovering FS (s) 10.0 74.5 1,295

time for recovering FR and FP (s) 0.5 2.5 16.5

time (overall) (s) 10.5 77.1 1,313

memory (MB) 354.6 1,970.3 11,867

claimed security level (bit) 80 112 160

parameters(q,d,o,r,s,l) (31,33,32,16,5,16) (31,47,47,22,5,22) (31,71,71,32,5,32)

(m,n) (86,49) (121,72) (179,110)

time for recovering FS (s) 487.0 9,705

time for recovering FP and FR 10.0 69.1

time (overall) 497.0 9,777 100,0001

memory (MB) 8,518.5 47,988 300,0001

Table 1. Running time of the proposed attack
1) conjectured values

As the second column of the table shows, doubling the parameters leads to an
increase of the running time and memory requirements of our attack by factors
of about 50 and 25, which corresponds to our theoretical estimations.4

The parameter sets shown in the bottom half of Table 1 are those proposed by
the authors of [7] for security levels of 80, 112 and 160 bit respectively. As the
table shows, we can (even with our limited resources and poorly optimized at-
tack) break the parameter sets proposed for 80 and 112 bit security in very short
time. For the parameters proposed for 160 bit of security, we estimate a running
time of our attack of about one day with 300 GB of memory required. While
breaking this instance lies beyond our possibilities, it is completely practical for
organizations with better equipment.

8 Conclusion

In this paper we propose a practical attack against the SRP encryption scheme of
Yasuda and Sakurai [7]. Our attack uses the min-Q-rank property of the scheme
to recover parts of the linear transformation T , the transformation U and the
Square part FS of the central map. Following this, we use the known structure
of the Rainbow polynomials to recover the second half of the map T as well as
the Rainbow and Plus part of the central map. Our attack is very efficient and
breaks the SRP instances proposed in [7] for 80 and 112 bit security in very
short time.

Therefore, our attack shows that the security of a weak multivariate scheme

4 For larger parameters, the memory access time plays a major role in the overall
running time. Therefore the corresponding factors are nuch larger.
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like Square is not automatically increased by combining it with another (secure)
scheme.
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13. Bettale, L., Faugére, J., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants
for odd and even characteristic. Designs Codes and Cryptography 69 (2013), pp.
1 - 52.

14. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE.
PQCrypto 2017, LNCS vo. 10346, pp. 289 - 308. Springer (2017).

15. Vates, J., Smith-Tone, D.: Key recovery for all parameters of HFE-. PQCrypto
2017, LNCS 10346, pp. 272 -288. Springer (2017).



Total Break of the SRP Encryption Scheme 17

A Toy Example

In the following we illustrate our attack using a toy example with small param-
eters.

A.1 Key Generation

For our toy example we use GF(7) as the underlying field. We choose the param-
eters of SRP as (d, o, r, s, l) = (2, 2, 1, 1, 1).5 Therefore our public key consists of
six equations in three variables. The Square map is defined over the extension
field GF(7)[X] / 〈X2 + 6X + 3〉. For simplicity, we restrict to linear maps T and
U as well as homogeneous quadratic maps FR and FP . By doing so, the public
key P of our scheme will be homogeneous quadratic, too.

Let the linear maps T and U be given by the matrices

T =


1 5 1 6 3 3
5 3 5 2 2 5
0 4 0 4 5 0
0 6 6 2 4 3
3 3 6 3 6 3
5 3 5 0 4 6

 ∈ F6×6 and U =

6 0 3 2
2 0 0 4
4 1 1 0

 ∈ F3×4.

The Square map FS(X) = X2 is given by the matrix F =

(
1 0
0 0

)
∈ F2×2.

Let the three Rainbow polynomials be given by the 4× 4 matrices

FR,0 =


2 6 2 3
6 1 6 0
2 6 0 0
3 0 0 0

 , FR,1 =


2 1 5 1
1 5 0 6
5 0 0 0
1 6 0 0

 , and FR,2 =


5 4 3 0
4 2 0 1
3 0 0 0
0 1 0 0

 .

The Plus polynomial is given by the 4× 4 matrix

FP0
=


3 4 3 2
4 4 0 3
3 0 5 0
2 3 0 3

 .

We compute the public key of our scheme by P = T ◦ (FS ,FR,FP ) ◦ U and
obtain the following 6 3× 3 matrices representing P

5 Note that this parameter choice does not meet the description in Section 2.2, where
d was required to be odd. However, an odd value of d is only needed for the efficient
decryption. The scheme itself can be defined for any value of d.
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P0 =

6 6 0
6 6 0
0 0 1

 , P1 =

5 2 5
2 3 4
5 4 6

 , P2 =

6 4 2
4 0 1
2 1 1


P3 =

4 5 3
5 6 3
3 3 3

 , P4 =

5 1 5
1 1 4
5 4 3

 , and P5 =

2 4 6
4 3 1
6 1 3

 .

A.2 Recovery of Transformation of Square Polynomials

In the first step of the attack, we have to solve a MinRank problem on the 6
matrices P0, . . . ,P5 with target rank 1. One solution is given by

v = (1, b19, b13, b9, b47, b9),

where b is a generator of the extension field E=GF(72).
From this, we obtain the first part of the linear transformation T which

divides the Square part from the remaining polynomials. Let T̂′ represent the
first d columns of T̂. We may recover the first d columns of T−1 via right
multiplication by M−1

d .

T̂′ =


1 1
b19 b37

b13 b43

b9 b15

b47 b41

b9 b15

 , T−1
′

= T̂′M−1
d =


1 1
1 3
3 3
0 3
5 2
0 3

 .

Note that the entries in the second column of T̂′ are just the Frobenius powers
of the first column entries.

A.3 Recovery of the Input Transformation U

Next we can use the first column, [ti,0], of T̂′ to recover the first d columns of
the matrix representation of the linear transformation U , thus separating the
vinegar subspace from the oil subspace. To accomplish this, we construct our
rank one solution to the MinRank step

L =

m−1∑
i=0

ti,0Pi =

b45 b3 b18b3 b9 6
b18 6 b39

 .

Let K be the left kernel of L and construct the reduced row echelon form
matrix K whose rows form a basis of K.

K =

(
1 0 b3

0 1 b9

)
.
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Any element in the right kernel of K forms the first column of W. The second
column is the first Frobenius power of the first. For a random selection we obtain

W =

b45 b27b3 b21

b18 b30

 .

We next recover the first d = 2 columns of U via the relation

WM−1
d = U

[
Id

0o×d

]
=

5 5
4 5
1 2

 .

Extending this matrix, we construct the invertible

Û =

5 5 0
4 5 0
1 2 1

 .

We may now extend this matrix to any n× n+ l matrix. The simplest way
is to append zeros. This technique is always effective due to the isomorphism
described at the beginning of Section 5. Thus we obtain

U =

5 5 0 0
4 5 0 0
1 2 1 0

 .

A.4 Recovering FS

Knowing T−1
′
and Û, we can recover the Square part of the central map. Specif-

ically, we recover the top left 2× 2 submatrix of Û−1LÛ−>:

F∗0 =

(
b3 0
0 0

)
.

A.5 Recovering FR and FP

We solve the equation

[
0(o−l)×d Io−l

]
Û−1

(
m−1∑
i=0

tiPi

)
Û−>

[
0d×(o−l)

Io−l

]
for ti and append o + r = 3 linearly independent solutions as column vectors
onto T−1

′
. The final s = 1 column(s) of T−1can be chosen randomly to achieve

full rank. Our random selection produces

T−1 =


1 1 0 0 0 5
1 3 0 0 0 6
3 3 2 6 4 3
0 3 1 5 4 6
5 2 2 0 2 1
0 3 1 0 2 1

 .
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Now with T−1 we can recover explicitly the Rainbow and Plus polynomials.
To do so, we compute

(Û−1P0Û
−>, . . . , Û−1Pm−1Û

−>)T−1.

We may now express the Rainbow and Plus polynomials as quadratic forms
in n variables by appending l rows and columns of arbitrary values, since our
choice of U makes these entries obsolete. We obtain

FR,0 =


0 5 2 0
5 4 0 0
2 0 0 0
0 0 0 0

 , FR,1 =


0 0 6 0
0 2 0 0
6 0 0 0
0 0 0 0

 , FR,2 =


5 4 0 0
4 4 5 0
0 5 0 0
0 0 0 0

 ,

and

FP,0 =


4 5 2 0
5 4 1 0
2 1 5 0
0 0 0 0

 .

Via composition, one verifies that

P = T ◦ (FS ,FR,FP ) ◦ U .


